Unsupervised Haze Removal for Aerial Imagery Based on Asymmetric Contrastive CycleGAN

نویسندگان

چکیده

Aerial image dehazing is an important preprocessing step, since haze extremely degrades the imaging quality and affects subsequent applications of aerial imagery. Most current removal methods achieve encouraging performance by relying on paired synthetic data, while are limited to their generality scalability in practical tasks. To this end, paper aims learn effective unsupervised model from unpaired set clear hazy images. Motivated great advantages contrastive learning representation field, we first attempt formulate a Asymmetric Contrastive CycleGAN framework (namely ACC-GAN) maximize mutual information between domain haze-free domain. In latent space, introduced constraint ensures that restored pulled closer pushed away image, so as indirectly regularize process. Importantly, different standard CycleGAN, develop additional feature transfer network into forward path form asymmetric structure ACC-GAN, which can enhance encoded features During training, multi-dimension loss terms jointly built committee for generating dehazed results with higher naturalness better fidelity. Experimental synthesis real-world datasets indicate our method superior existing approaches, also very competitive other related supervised models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haze removal based on advanced haze optimized transformation (AHOT) for multispectral imagery

Ever-present spatial varying haze contamination in satellite scenes limits applications using visible and near infrared bands of low temporal resolution multispectral satellite imageries. A relative atmospheric correction technique: virtual cloud point (VCP) based on advanced haze optimized transformation (AHOT) is developed for haze removal. It is an improved algorithm of the previous dark obj...

متن کامل

Haze Removal Based on a Fully Automated and Improved Haze Optimized Transformation for Landsat Imagery over Land

Optical satellite imagery is often contaminated by the persistent presence of clouds and atmospheric haze. Without an effective method for removing this contamination, most optical remote sensing applications are less reliable. In this research, a methodology has been developed to fully automate and improve the Haze Optimized Transformation (HOT)-based haze removal. The method is referred to as...

متن کامل

Automatic Pavement Crack Detection Based on Aerial Imagery

Road health information is an important indicator for assessing the status of the road in management systems. Identifying the abandonment of surfaces is an important process in maintaining roads and traffic safety, which is traditionally conducted on the basis of field surveys. Today, remote sensing methods, especially photogrammetric imaging, are presented. In this article, based on by UAVs im...

متن کامل

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

Review on Haze Removal Methods

Image dehazing is one of the most important research area in image processing and pattern analysis. Haze is naturally an atmospheric effect. And it is the combination of air light and attenuation process. Air light increases the whiteness of the image and attenuation effect reduces the contrast. Haze removal algorithms are important in many vision applications. This paper reviewed various haze ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3186004